Biomass evolution in porous media and its effects on permeability under starvation conditions.
نویسندگان
چکیده
The purpose of this study was to understand bacteria profile modification and its applications in subsurface biological operations such as biobarrier formation, in situ bioremediation, and microbial-enhanced oil recovery. Biomass accumulation and evolution in porous media were investigated both experimentally and theoretically. To study both nutrient-rich and carbon-source-depleted conditions, Leuconostoc mesenteroides was chosen because of its rapid growth rate and exopolymer production rate. Porous micromodels were used to study the effects of biomass evolution on the permeability of a porous medium. Bacterial starvation was initiated by switching the feed from a nutrient solution to a buffer solution in order to examine biofilm stability under nutrient-poor conditions. Four different evolution patterns were identified during the nutrient-rich and nutrient-depleted conditions used in the micromodel experiments. In phase I, the permeability of the porous micromodel decreased as a result of biomass accumulation in pore bodies and pore throats. In phase II, starvation conditions were initiated. The depletion of nutrient in the phase II resulted in slower growth of the biofilm causing the permeability to reach a minimum as all the remaining nutrients were consumed. In phase III, permeability began to increase due to biofilm sloughing caused by shear stress. In phase IV, shear stress remained below the critical shear stress for sloughing and the biofilm remained stable for long periods of time during starvation. The critical shear stress for biofilm sloughing provided an indication of biofilm strength. Shear removal of biofilms occurred when shear stress exceeded critical shear stress. A network model was used to describe the biofilm formation phenomenon and the existence of a critical shear stress. Simulations were in qualitative agreement with the experimental results, and demonstrate the existence of a critical shear stress.
منابع مشابه
Experimental Study of Foam Flooding in Low Permeability Sandstones: Effects of Rock Permeability and Microscopic Heterogeneity
Foam flooding (or injection of foam) is a common technology to enhance oil recovery. Although the effects of permeability on foam flooding were well studied in many laboratory experiments, little research has been focused on the specificity of low permeability. In this paper, a series of constant-quality nitrogen foam flow experiments were conducted to investigate the effects of permeability on...
متن کاملBiofilm development and the dynamics of preferential flow paths in porous media.
A two-dimensional pore-scale numerical model was developed to evaluate the dynamics of preferential flow paths in porous media caused by bioclogging. The liquid flow and solute transport through the pore network were coupled with a biofilm model including biomass attachment, growth, decay, lysis, and detachment. Blocking of all but one flow path was obtained under constant liquid inlet flow rat...
متن کاملAn Experimental Study on Permeability Reduction Resulting from Mixed BaSO4, CaSO4, and SrSO4 Scale Deposition in Porous Media during Water Injection
Sulfate scale deposition (BaSO4, CaSO4, and SrSO4) is a common problem in oilfield operations around the world, which causes significant formation damage during production and injection activities. This paper presents the results of an experimental study on the permeability reduction of porous media due to sulfate scale deposition. A set of experiments were cond...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کاملGas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability
This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 69 1 شماره
صفحات -
تاریخ انتشار 2000